翻訳と辞書
Words near each other
・ Leges palatinae
・ Leges provinciae
・ Leges regiae
・ Legendary Whitetails
・ Legendary Wings
・ Legendary Witches
・ Legende
・ Legende sau basmele românilor
・ Legendele Olimpului
・ Legenden om Ljusets rike
・ LegendMUD
・ Legendo
・ Legendre
・ Legendre (crater)
・ Legendre chi function
Legendre form
・ Legendre function
・ Legendre polynomials
・ Legendre pseudospectral method
・ Legendre rational functions
・ Legendre relation
・ Legendre sieve
・ Legendre symbol
・ Legendre transformation
・ Legendre wavelet
・ Legendre's conjecture
・ Legendre's constant
・ Legendre's equation
・ Legendre's formula
・ Legendre's theorem on spherical triangles


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Legendre form : ウィキペディア英語版
Legendre form
In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Legendre chose the name ''elliptic integrals'' because〔
〕 the second kind gives the arc length of an ellipse of unit semi-minor axis and eccentricity \scriptstyle (the ellipse being defined parametrically by \scriptstyle, \scriptstyle).
In modern times the Legendre forms have largely been supplanted by an alternative canonical set, the Carlson symmetric forms. A more detailed treatment of the Legendre forms is given in the main article on elliptic integrals.
== Definition ==

The incomplete elliptic integral of the first kind is defined as,
:F(\phi,k) = \int_0^\phi \frac\,dt,
and the third kind as
:\Pi(\phi,n,k) = \int_0^\phi \frac of Numerical Recipes.〔
The respective complete elliptic integrals are obtained by setting the amplitude, \scriptstyle, the upper limit of the integrals, to \scriptstyle.
The Legendre form of an elliptic curve is given by
:y^2 = x(x - 1)(x - \lambda)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Legendre form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.